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We propose a simultaneous approach for the solution of the associated DAE-constrained parameter estimation
problem. Parameter estimation is an essential task in the development and on-line update of first-principles
models for low-density polyethylene tubular reactors, consisting of nonlinear and stiff differential-algebraic
equations (DAE). Our approach discretizes the reactor model equations in space, leading to a large-scale
nonlinear program (NLP) that can be solved efficiently with state-of-the-art general-purpose NLP solvers. In
doing so, more efficient estimation strategies can be considered, enabling the solution of challenging estimation
problems including multiple data and large parameters sets. This approach is efficient in handling advanced
regression problems such as the errors-in-variables-measured (EVM) formulation. The methodology is fast,
robust, and reliable and can be used both for off-line and on-line purposes. Moreover, substantial improvements
on the reactor model predictions have been obtained over previous approaches, making the model amenable
for real-time optimization and control tasks.

1. Introduction

The chemical industry faces a challenging and competitive
market where high-quality commodity polymers play a central
role. These polymers are produced in high-throughput and
flexible continuous processes which produce a multitude of
polymer grades with tight quality specifications. Stringent
performance conditions coupled with high operating costs have
motivated the application of advanced real-time optimization
and control schemes. These applications require the development
of comprehensive first-principles models with accurate predic-
tive capabilities. In all of these developments, a considerable
amount of time is spent in discriminating among candidate
models and determining the associated parameters.

Low-density polyethylene (LDPE) grades are produced in
processes with high-pressure, multizone tubular reactors. React-
ing in the gas phase at high temperature (130-300 °C) and
pressure (1500-3000 atm), ethylene and a comonomer are
copolymerized through a free-radical mechanism1 in the pres-
ence of complex mixtures of peroxide initiators. A typical
tubular reactor can be described as a jacketed, multizone device
with a predefined sequence of reaction and cooling zones.
Different configurations of monomer, comonomer, and initiator
mixtures enter in feed and multiple sidestreams and are selected
to maximize the reactor productivity and obtain the desired
polymer properties. The total reactor length ranges between 0.5
and 2 km, while its internal diameter does not exceed 70-80
mm. A schematic representation of a typical tubular reactor is
presented in Figure 1. The final end-use properties of the
different LDPE grades are mainly correlated to the polymer
density and macromolecular properties. Different additives or
chain-transfer agents (CTAs) are added to the axial feed streams
to control the polymer melt index. In general, the required
polymer properties are enforced through complex recipes that
try to keep the reactor under strict operating conditions.

Mathematical modeling of industrial LDPE tubular reactors
is a fundamental but difficult task that motivates a huge amount
of research effort. A number of comprehensive steady-state
tubular reactor models are available in the literature.2-5 These

large-scale models differ in the mechanisms postulated to
describe the polymerization kinetics,6 the prediction approach
of the final polymer properties,7 the prediction methods of the
reacting mixture physical properties,8 assumptions regarding the
flow regime, different approaches for taking into account the
reactor variability,9,10 and, finally, the kinetic and transport
parameters used for model validation.4 A common observation
in all these studies is the lack of a consistent database of
parameters that can be used for model development. Therefore,
it is often necessary to re-estimate these parameters using
experimental data from the particular laboratory or industrial
reactor under study, a complicated and time-consuming task.5,8

Well-known parameter estimation theory and methods have
been applied only recently to large-scale rigorous process
models11,12 and, in particular, to polymerization reactors
models.13-15 In the particular case of LDPE tubular reactor
models, the parameter estimation problem turns out to be so
large and complex that it is usually simplified, using heuristics
based on the knowledge of the kinetic mechanism.5,8 As a result,
these nonsystematic approaches may yield parameters with large
confidence regions, leading to lack of robustness in model
predictions over the desired operating range or different reactor
configurations.

Although essential for systematic model development, the
application of robust and efficient parameter estimation tech-
niques to tubular polymerization reactors models has been
limited due to several factors. First, distributed reactor models
comprise large sets of complex differential-algebraic equations
(DAEs). Accordingly, the associated parameter estimation
problem is formulated as a large-scale DAE-constrained opti-
mization problem. The second factor has been the lack of
efficient strategies and numerical algorithms able to handle these
computationally intensive problems. Finally, estimation prob-
lems must be solved using scarce and sometimes noninformative
industrial data, giving rise to ill-posed problems with nonunique
solutions.

In this work, we present an efficient approach for the solution
of parameter estimation problems arising from the development
and on-line update of first-principles models for LDPE tubular
polymerization reactors. The main idea is to formulate a general
multiset parameter estimation problem with a maximum-
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likelihood objective function subject to a large-scale DAE
model. The estimation problem is discretized in space, giving
rise to large-scale, structured, and highly nonlinear NLPs. The
resulting optimization problems are then solved using the state-
of-the-art general-purpose nonlinear program (NLP) interior-
point algorithm, IPOPT.16

Our study is based on a comprehensive tubular reactor model
obtained from extensive literature studies. For the estimation
problem, we consider multiple sets of industrial data containing
snapshots of the operating conditions of different full-scale
industrial reactors configurations that produce several polymer
grades. The parameter estimation problem is analyzed from two
perspectives. First, we consider estimation of the on-line
adjustable parameters. These parameters are estimated to match
the reactor temperature profile at different instances of the
operation horizon. Next, we consider the estimation of intrinsic
kinetic parameters that match the reactor conversion and the
macromolecular properties of different grades. An important
observation is that, if industrial data are used in the estimation
problem, on-line adjustable and kinetic parameters should be
estimated simultaneously, giving rise to large, complicated
estimation problems. This leads to single estimation problems
formulated with multiple data sets, that obtain reliable param-
eters with tight confidence intervals. Consequently, the model
is robust and accurate in predicting the behavior of different
reactors over a wide range of conditions. Finally, we show that
advanced nonlinear regression methods can be applied efficiently
to large-scale rigorous process models with this approach. To
illustrate this, we consider both standard least-squares and errors-
in-variables-measured (EVM) formulations for the solution of
the parameter estimation problem.

The next section presents a comprehensive first-principles
LDPE reactor model, followed by formulation of the parameter
estimation problems in section 3. The strategy followed for the
solution of the DAE-constrained optimization problem is
discussed in section 4. We discuss an efficient simultaneous
approach based on orthogonal collocation on finite elements.
This strategy enables parameter estimation problems to be
formulated as large-scale NLPs. Here, the general features of
the interior point algorithm used for their solution are analyzed
from a parameter estimation point of view. In section 5, we
demonstrate the capabilities of the proposed approach for
estimation of large sets of on-line adjustable and kinetic
parameters for the LDPE reactor model using industrial steady-
state data. Finally, the last section presents a summary and set
of conclusions, along with discussion of future work to deal
with challenging parameter estimation problems.

2. Reactor Mathematical Model

We consider a comprehensive first-principles LDPE tubular
reactor model described in references 4 and 17. Due to the
complexity of the equations and the lack of space, only the
general features of the model are described.

2.1. Model Structure. The first-principles tubular reactor
model describes the gas-phase free-radical copolymerization of
ethylene with a comonomer (vinyl acetate in this work) in the
presence of several different initiators and chain-transfer agents
(CTAs) under supercritical conditions. The mechanism postu-
lated to describe the copolymerization kinetics is presented in
Table 1. Here, the symbolsIi with i ∈{1, ..., NI}, R•, M1, M2,
and Si with i ∈{1, ..., NS} denote the initiators, radicals,
monomer, comonomer, and chain-transfer agent (CTA) mol-
ecules, respectively. The symbolηi represents the efficiency of
initiator i. The symbolsPr,s represent “live” polymer chains
ending with a monomer unitswith r monomer units ands
comonomer units. Similarly,Qr,s are live polymer chains with
r, s degrees of polymerization but ending with a comonomer
unit andMr,s are “dead” polymer chains. The respective reaction
rates for the monomers, initiators, chain-transfer agents, and
live and dead polymer chains can be obtained by combining
the reaction rates of the elementary reactions describing their
production and consumption. Here, we recognize that a complete
description of the polymer chain molecular weight distributions
requires an extremely large number of population balances for
the polymer chains. To avoid this, the method of single
moments18 is used to describe macromolecular properties of the
copolymer. The method of moments is based on the statistical
representation of the polymer average molecular weights and
the compositional properties in terms of the leading moments
of the number chain-length distributions of the live and dead
polymer chains. In this model, the univariate number chain-
length distributions forPr,s, Qr,s, and Mr,s are considered.
Accordingly, the moments of the number chain-length distribu-
tions are defined as

whereR1(r, s) ) [Pr,s], R2(r, s) ) [Qr,s], andD(r, s) ) [Mr,s].
With this, the number- and weight-average molecular weights,
the degrees of long-chain branching (LCB) and short-chain
branching (SCB) per 1000 carbon atoms can be expressed in
terms of the leading moments of the univariate length-chain
distribution.

A typical LDPE tubular reactor consists of a complex
configuration of interconnected reaction and cooling zones.
Multiple injection points of initiator mixtures, monomer, and
CTAs are found along the reactor. The model complexity is
often reduced by making some general validated assumptions
such as the following: the reacting mixture forms a single
supercritical phase, plug flow is observed along the reactor, and
net production rates of the radicals and live polymer chains are
negligible (quasi-steady-state assumption).4 Considering this, a

Figure 1. Schematic representation of a typical LDPE tubular reactor.
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set of steady-state differential molar balances describing the
evolution of the reacting mixture along each zone can be
derived. The molar flow rateFj for every componentj in the
mixture can be expressed in terms of the fluid velocity,V, and
its molar concentrationCj,

whereA is the reactor cross-sectional area at the given reactor
axial position. According to this, the design equations for each
reactor zone are given by the following set of differential and
algebraic equations:

Initiator(s)

Monomer and Comonomer

Table 1. Free-Radical Copolymerization Mechanism of Ethylene with a Comonomer

Initiator(s) Decomposition Incorporation of CTAs

Ii 98
ηikdi

2R i ) 1, NI Pr,s + Si 98
kspi1

Pr+1,s i ) 1, NS

Qr,s + Si 98
kspi2

Qr,s+1 i ) 1, NS

Chain Initiation Termination by Combination

R• + M1 98
kI1

P1,0 Pr,s + Px,y98
ktc11

Mr+x,s+y

R• + M2 98
kI2

Q0,1 Pr,s + Qx,y98
ktc12

Mr+x,s+y

Qr,s + Qx,y98
ktc22

Mr+x,s+y

Chain Propagation Termination by Disproportionation

Pr,s + M198
kp11

Pr+1,s Pr,s + Px,y98
ktd11

Mr,s + Mx,y

Pr,s + M298
kp12

Qr,s+1 Pr,s + Qx,y98
ktd12

Mr,s + Mx,y

Qr,s + M198
kp21

Pr+1,s Qr,s + Qx,y98
fktd22

Mr,s + Mx,y

Qr,s + M298
kp22

Qr,s+1

Chain Transfer to Monomer Backbiting

Pr,s + M198
kfm11

P1,0 + Mr,s Pr,s98
kb1

Pr,s or Qr,s

Pr,s + M298
kfm12

Q0,1 + Mr,s Pr,s98
kb2

Qr,s or Pr,s

Qr,s + M198
kfm21

P1,0 + Mr,s

Qr,s + M298
kfm22

Q0,1 + Mr,s

Chain Transfer to Polymer â-Scission of Sec- and Tert-Radicals

Pr,s + Mx,y98
kfp11

Px,y + Mr,s Pr,s98
kâ1

Mr,s
) + P1,0

Pr,s + Mx,y98
kfp12

Qx,y + Mr,s Pr,s98
kâ2

Mr,s
) + Q0,1

Qr,s + Mx,y98
kfp21

Px,y + Mr,s Pr,s98
kâ1′

Mr,s
) + P1,0

Qr,s + Mx,y98
kfp22

Qx,y + Mr,s Pr,s98
kâ2′

Mr,s
) + Q0,1

Chain Transfer to CTAs

Pr,s + Si 98
ksi1

P1,0 + Mr,s i ) 1, NS

Qr,s + Si 98
ksi2

Q0,1 + Mr,s i ) 1, NS

Fj ) VACj (3)

dFIi

dz
) - 1

V
kdiFIi i ∈ {1, ...,NI} (4)

dFmi

dz
) -

Fmi

V
(kIiCR + ∑

j)1

2

kpjiλ0
j + ∑

j)1

2

kfmjiλ0
j ) i ∈ {1, 2}

(5)
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Chain-Transfer Agent(s)

Primary Radicals

Energy Balances

Momentum Equation

Long-Chain Branching (LCB) and Short-Chain Branching
(SCB)

Dead Polymer Chains Moments

where

Live Polymer Chain Moments

where

Here, the fluid velocityV is calculated from the total molar
flow rate and the mixture density at the corresponding operating
conditions. It is important to notice that the primary radicals
and the live polymer moment flow rates are algebraic variables.
From the schematic representation of the reactor, we can see
that the initial conditions of the differential equations are
determined from material balances at the axial feed points.

Macromolecular properties of the polymer can be obtained
in terms of the leading moments of the univariate chain-length
distributions. Accordingly, the polymer number- and weight-
average molecular weights and polydispersity are given by

where MW0 is the average molecular weight of a building unit
in the polymer chain. The number of short- and long-chain
branches per 1000 atoms can be obtained from

dFSi

dz
) -

FSi

V
(∑

j)1

2

ksijλ0
j + ∑

j)1

2

kspijλ0
j ) i ∈ {1, ...,NS} (6)

FR )
A

(kI1Fm1+kI2Fm2)
(V∑

i)1

NI

2ηikdiFIi) (7)

FTCp
dT
dz

) (-∆Hr1)(kp11λ0
1 + kp21λ0

2)Fm1/V +

(-∆Hr2)(kp12λ0
1 + kp22λ0

2)Fm2/V + FcCpc

dTc

dz
(8)

FcCpc

dTc

dz
) πDi(HTC)(Tc - T) (9)

dP
dz

) -2fr
FmV2

Di

1
101325

(10)

1

A

dFLCB

dz
) ∑

i)1

2

(kfpi1 + kfpi2)λ0
i µ1 (11)

V

A

dFSCB

dz
) V(∑

i)1

2

kbiλ0
i ) +

1

A
∑
j)1

NS

(kspj1λ0
1 + kspj2λ0

2)FSj (12)

1

A

dFµ0

dz
) ∑

i)1

2

∆iλ0
i +

1

2
∑
i)1

2

∑
j)1

2

ktcijλ0
i λ0

j - µ1 ∑
i)1

2

∑
j)1

2

kfpijλ0
i

(13)

1

A

dFµ1

dz
) ∑

i)1

2

Cmi(∑
j)1

2

kpjiλ0
j ) (14)

1

A

dFµ2

dz
) 2∑

i)1

2

∑
j)1

2

kpjiλ1
j Cmi + ∑

i)1

2

∑
j)1

2

ktcijλ1
i λ1

j (15)

∆i ) ∑
j)1

2

kfmijCmj + ∑
j)1

NS

ksjiCsj + ∑
j)1

2

ktdijλ0
j +

∑
j)1

2

kfpijµ1 + kâi + kâi′ i ∈ {1, 2} (16)

Fλ0
1 ) xG*

E
(17)

Fλ0
2 ) aFλ0

1 (18)

Fλ1
1 ) uA

B1Γ1
/ - A2Γ1

/

A1 - B1B2
(19)

Fλ1
2 ) uA

-Γ2
/ - B2λ1

1

A2
(20)

a )
(kfm12 + kp12)Fm2 + kfp12Fµ1

(kfm21 + kp21)Fm1 + kfp21Fµ1

(21)

E ) (ktd11 + ktc11) + 2a(ktd12 + ktc12) + a2(ktd22 + ktc22)
(22)

G* ) (kI1Fm1 + kI2Fm2)FR (23)

A1 ) -(kp12Cm2 + ∆1 + ∑
j)1

2

ktc1jλ0
j ) (24)

A2 ) -(kp21Cm1 + ∆2 + ∑
j)1

2

ktc2jλ0
j ) (25)

B1 ) kp21Cm1 (26)

B2 ) kp12Cm2 (27)

Γi
/ ) (kIiCR + ∑

j)1

2

kfmjiλ0
j + ∑

j)1

2

kpjiλ0
j )Cmi +

λ0
i (∑

j)1

NS

ksjiCsj + ∑
j)1

NS

kspjiCsj) + µ2(∑
j)1

2

kfpjiλ0
j ) + (kâi + kâi′)λ0

i

(28)

MWn ) MW0

Fµ1

Fµ0
(29)

MWw ) MW0

Fµ2

Fµ1
(30)

PDI )
MWw

MWn

LCB ) 500
FLCB

Fµ1
(31)
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and finally, the polymer densityFpol is correlated to the number
of short-chain branches per 1000 carbon atoms,

wherec0 andc1 are correlation parameters.
The accuracy of the tubular reactor model depends strongly

on the appropriate prediction of the reacting mixture properties.
Most of the model complexity comes from the large number of
algebraic equations required for the calculation of the mixture
physical, thermodynamic, and transport properties. The proper-
ties that have more influence on the model accuracy are the
mixture density, heat capacity, and viscosity. The gas-phase
density and heat capacity are obtained by means of a generalized
correlation, based on a three-parameter corresponding states
model,19 while the rest of the properties are obtained from
complex semiempirical correlations. All the correlations used
have been validated experimentally and are reported elsewhere.4

In summary, a typical tubular reactor model with around 10-
13 zones can contain up to 300-400 ordinary differential
equations (ODEs) and 1000-2000 algebraic equations. This is
a highly nonlinear, stiff large-scale DAE model which is
computationally expensive and requires a robust and efficient
solution algorithm.

2.2 Model Parameters.One of the most difficult problems
in simulating the operation of high-pressure LDPE reactors is
the selection of appropriate values for the kinetic parameters.
Under general assumptions, model equations do not depend on
the absolute values of the kinetic rate constants but on predefined
ratios of these parameters.20 However, among literature studies,
the actual ratios and values of the kinetic constants differ
sometimes by orders of magnitude. Furthermore, it is well-
known that kinetic and transport phenomena mask each other
in polymerization reactors.21 As a result, it is still difficult to
find a reliable and consistent set of parameters for the model at
hand and, obviously, the best approach to tackle this problem
is to estimate the parameters using the detailed reactor model
to match industrial reactor data.

LDPE tubular reactors are also subject to persistent variability
over the operating horizon. This requires the selection and on-
line estimation of adjustable parameters to account for this
variability. One of the most fundamental and complex problems
associated with the operation of LDPE tubular reactors is the
severe and random fouling of the inner reactor wall due to a
continuous polymer buildup. This phenomenon is difficult to
predict by means of simple mechanistic models.22 There are
two simple engineering ways to handle this problem. The first
one involves the development of semiempirical correlations in
terms of the Reynolds number, polymer composition, and some
other variables aiming at the prediction of the polymer fouling
resistance evolution along the reactor.23 While this approach
has given relatively good results, the correlation is only useful
for the problem at hand and does not capture the evolution of
the polymer buildup over time, which is the true motivation
for the on-line adjustment of the reactor model.8,9 The second
approach includes two alternatives. If a detailed heat transfer
model is available, the fouling resistance can be estimated for
each zone to match the plant reactor temperature profile.17 Here,
it is assumed that the fouling resistance is constant along each
zone. In the absence of a heat transfer model, the heat transfer
coefficients (HTCs) can be defined directly as adjustable
parameters in each zone.

As illustrated in Figure 1, a number of sidestream feeds of
initiator mixtures or cocktails are distributed along the reactor.
At each feed point, a typical mixture can include up to four
different initiators with different chemical properties. These
initiators decompose to generate the radicals that start the
polymerization. The initiator decomposition reactions include
sets of complex reaction subnetworks involving the formation
of highly active intermediate species that can react among each
other or with impurities in the reacting mixture before generating
the desired radicals. Thus, there is an efficiency factorηi

associated with the decomposition of each initiator. These
initiator efficiencies are strongly dependent on a large number
of factors such as the reacting mixture temperature and pressure,
the degree of mixing at the feed points, and the presence of
other species such as impurities or CTAs. Moreover, the
efficiency of an individual initiator might vary with its
concentration in the reacting mixture.24,25 In LDPE tubular
reactors, wide variations of the reacting mixture temperature,
pressure, composition, and physical properties are observed. As
a consequence, wide variations of the efficiencies are expected
as well along the reactor and over time due to the accumulation
of impurities. To predict the initiator efficiencies observed in
LDPE reactors, these can be modeled as parallel reactions with
given decomposition constants that generate undesired spe-
cies.2,10 Alternatively, the initiator efficiency for each reaction
can be estimated for each reaction zone in order to match the
plant reactor temperature profile. Previous studies have shown
satisfactory results using this approach. To simplify the param-
eter estimation task, it is usually assumed that there is a common
efficiency for all the initiators in the mixture.17 While this
assumption provides sufficiently accurate model predictions, it
is expected that the estimation of the individual initiator
efficiencies will result in a better match of the plant reactor
temperature profile. This is the approach followed in this work.

3. Parameter Estimation Problem Formulation

In each zone, the reactor model is composed of individual
sets of differential and algebraic equations describing the
evolution of the reacting mixture and cooling agent temperatures.
These individual sets are connected through balances at the feed
points, thus leading to a large, highly nonlinear system of DAEs
for the reactor system. The overall model is defined by the
following:

Here, Fj(.) and Gj(.) are vectors of differential and algebraic
equations, respectively, in zonej ∈ {1, ..., NZ} where NZ is
the number of zones in the reactor andzdenotes the axial position
along each zone. The vectorFj(.) includes all the differential
material and energy balances in the model. The vectorGj(.)
includes all the kinetic Arrhenius-type equations, the expressions
defining the reacting mixture properties, and the balances at
the feed points along each zonej. The symbolsyj and wj

represent vectors of differential and algebraic variables, respec-
tively, for zonej. Here, the initial conditionsyj(0) for zonej
are obtained from material and energy balancesφ(.) at the feed

SCB) 500
FSCB

Fµ1
(32)

Fpol ) c0 + c1SCB (33)

Fj[dyj(z)

dz
, yj(z), wj(z), z, pj,Π] ) 0

Gj[yj(z), wj(z), z, pj, Π] ) 0

yj(0) ) φ(yj-1(zL j-1
), Ff j

)

j ∈ {1, ..., NZ} (34)
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points relating the outlet stream of zonej - 1 given by
yj-1(zL j-1) (wherezLj is the total length of zonej) and the side
feedsFfj. An important observation here is that the reactor model
can be solved either sequentially, by solving the DAEs for one
zone at a time, or simultaneously, by including the coupled DAE
sets and the feed point balances of all the zones in a single
large problem. From the reactor model, we can distinguish
between two different sets of parameters, the first setpj are
parameters that correspondexclusiVely to the particular zonej;
this includes, for example, the heat transfer coefficient and the
multiple initiator efficiencies of zonej. The second set of
parametersΠ corresponds to those parameters that are defined
for theentirereactor. These parameters include the kinetic rate
constants. Clearly, to capture the interaction of parameterspj

andΠ, a simultaneous solution of the overall reactor model is
needed.

3.1. Standard Least-Squares Formulation.Once the overall
reactor model is defined, a proper objective function needs to
be selected for the parameter estimation problem. In a standard
estimation problem, the model parameterspj andΠ are selected
to minimize the deviation between the predicted and the
measured values of a set of output variables. Here, a subset of
the output variables is defined from differential variables at
particular positions of a given zonej, for example, the reacting
mixture temperatures and the inlet and outlet cooling water
temperatures. A second subset of output variables corresponds
to the overall reactor conversion, polymer density, number- and
weight-average molecular weights, and LCB at the reactor outlet.
Finally, the parameter estimation problem must include multiple
data sets describing the different operating conditions or reactor
configurations and corresponding values of their output vari-
ables. This implies that the large-scale reactor model (35) needs
to be defined for every data setk ∈ {1, ..., NS} where NS is
the number of data sets. With this, the general parameter
estimation problem can be stated as

where NM(j) is the number of measurement positions along
zonej, zi are specific measurement locations along a particular
zone j, the symbol M denotes the actual plant measurements,
andVy

-1 andVw
-1 denote positive-definite weighting matrices

for the output variables, withVy and Vw representing ap-
proximations of the corresponding covariance matrices.

The complexity of these problems relies on the fact that the
overall reactor model needs to be solved for every data set
included in the problem. Therefore, the number of DAE
constraints increases linearly with the number of data sets. For
example, a problem with a single data set contains around 300-

400 ODEs and 1000-2000 algebraic equations while a problem
with 5 data sets will contain 1500-2000 ODEs and 5000-
10 000 algebraic equations.

3.2. Errors-in-Variables-Measured (EVM) Formulation.
The standard least-squares formulation considers errors that are
only present in the output variables. This approach is well-
known to give biased parameters.26,27In the errors-in-variables-
measured (EVM) estimation formulation, on the other hand, both
errors in the input and output variables are taken into account.28

For complex systems with multiple inputs such as LDPE tubular
reactors, this approach is particularly useful in finding more
reliable kinetic parameters. A major difficulty in solving this
problem is that, since the error is accounted for in all the
variables, the optimization is performed on both the parameters
and the inputs, thus leading to problems with many degrees of
freedom. The general EVM formulation resembles that of the
standard least-squares (35) but, in this case, the inputs for every
zonej in every data setk are decision variables. Upon addition
of terms in the objective function that account for allowed
adjustments from measured input variables, the parameter
estimation problem becomes

whereVu
-1 is a positive-definite weighting matrix for the input

variables anduk,j and uk,j
M are the calculated and measured

values of the input variables. Notice that, in this formulation, a
multitude of side feeds (monomer, comonomer, CTAs) to the
tubular reactorFfk,j correspond to the input variables and appear
explicitly in the connectivity equations. Some other inputs
included in the formulation are the reactor inlet pressure, feed,
and side stream temperatures and the cooling water flow rates
and temperatures. This estimation approach corrects for mea-
surement errors on all these variables and is specially useful in
obtaining more reliable kinetic parameters. However, as ex-
pected, the degrees of freedom in the estimation problems
increase linearly with the number of data sets. Consequently,
solutions of EVM problems are often considered to be com-
putationally expensive.

4. Solution Strategy

Two main approaches are used for the solution of the DAE-
constrained optimization problems described in the previous
section. First, the sequential or feasible-path approach separates
the model solution and optimization tasks. Instead, the optimizer

min
Π,pk,j

∑
k)1

NS

∑
j)1

NZ

∑
i)1

NM(j)

(yk,j(zi) - yk,j,i
M )TVy

-1(yk,j(zi) - yk,j,i
M ) +

∑
k)1

NS

(wk,NZ - wk,NZ
M )TVw

-1(wk,NZ - wk,NZ
M )

s.t.

Fk,j[dyk,j(z)

dz
, yk,j(z), wk,j(z), z, pk,j, Π, uk,j] ) 0

Gk,j[yk,j(z), wk,j(z), z, pk,j, Π] ) 0

yk,j(0) ) φ(yk,j-1(zLk,j-1
), Ffk,j

)

j ∈ {1, ..., NZ}, k ∈ {1, ..., NS} (35)

min
Π,pk,juk,j

∑
k)1

NS

∑
j)1

NZ

∑
i)1

NM(j)

(yk,j(zi) - yk,j,i
M )TVy

-1(yk,j(zi) - yk,j,i
M ) +

∑
k)1

NS

(wk,NZ - wk,NZ
M )TVw

-1(wk,NZ - wk,NZ
M ) +

∑
k)1

NS

∑
j)1

NZ

(uk,j - uk,j
M)TVu

-1(uk,j - uk,j
M)

s.t.

Fk,j[dyk,j(z)

dz
, yk,j(z), wk,j(z), z, pk,j, Π, uk,j] ) 0

Gk,j[yk,j(z), wk,j(z), z, pk,j, Π] ) 0

yk,j(0) ) φ(yk,j-1(zLk,j-1
), uk,j)

j ∈ {1,..NZ}, k ∈ {1, ..., NS} (36)
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updates the parameters and passes them to the DAE solver,
which integrates the model equations.29 Derivative information
required by the optimizer can be obtained through the integration
of sensitivity or adjoint equations or by perturbation.30-33 Since
this approach requires the repeated solution of the DAE system,
it can be computationally demanding for large-scale models.
Furthermore, the optimization task becomes much more expen-
sive for problems with multiple data sets, large parameter sets
or EVM formulations, thus requiring the decomposition of the
original problem through the solution of sequences of smaller
subproblems.11 Nevertheless, because of its relative simplicity
in developing solution frameworks from standard optimization
and integration algorithms, this approach has been popular for
the solution of parameter estimation problems involving DAE
models. Also, feasible path approaches are reliable even for stiff
nonlinear DAEs, do not require special initialization strategies,
and can handle the complexity of the DAEs efficiently.

In the simultaneous or infeasible-path approach, the DAE
model solution and optimization tasks are completely coupled
by performing a full discretization of the DAE model. With
this, the DAE-constrained optimization problem is converted
into a large-scale, structured NLP problem. The most important
advantage of this approach is that it avoids repeated solution
of the large-scale model; it is solved only once, at the solution
of the optimization problem. The recent potential of this
approach has been directly related to the availability of
computational resources, optimization strategies, and high-
performance scientific computing routines able to handle large-
scale optimization problems.34 Nowadays, state-of-the-art, general-
purpose nonlinear programming algorithms based on sequential
quadratic programming (SQP) and interior point (IP) methods
can efficiently handle NLP problems with over a million of
variables, thus enabling the solution of very challenging
optimization problems.35-37 In particular, these amenities are
provided in IPOPT, a general-purpose nonlinear programming
interior point algorithm.16 Furthermore, application of simul-
taneous approaches has become simple and efficient, due to the
availability of powerful modeling environments such as AMPL
and GAMS.38,39 Moreover, these platforms provide exact first
and second derivative information, thus enhancing the conver-
gence properties of the optimization algorithm. Simultaneous
approaches have been demonstrated for the solution of general
DAE- and PDAE-constrained optimization problems in many
areas of science and engineering, have been shown to be robust
and efficient,35,40,41and are superior to sequential approaches
on problems with many degrees of freedom.42 On the other hand,
this approach requires careful initializations and might suffer
from numerical difficulties associated with the discretization
of highly nonlinear and stiff DAEs.

4.1. Model Discretization. In this work, a simultaneous
approach based on orthogonal collocation on finite elements
was used for the solution of the parameter estimation problem.
This discretization scheme approximates the differential and
algebraic variable profiles by using a family of interpolation
polynomials. The entire axial length along each reactor zone is
divided into finite elements (z0 < z1 < ... < zNFE ) zL). Here,
we use a monomial basis representation for the differential
profiles43 that is particularly attractive since it leads to better
condition numbers of the Jacobian matrix

whereyi-1 is the value differential variable evaluated at the
beginning of elementi, hi ) zi - zi-1 is the length of the element

i, dy/dzi,q is the value of the first derivative in elementi at
collocation pointq, andΩq is an interpolation polynomial of
order NC that satisfies

whereFr is the location of therth collocation point within each
element andδq,r is the Kronecker delta. Continuity of the
differential profiles across elements is directly enforced by

Here, Radau collocation points are used because they stabilize
the system more efficiently in the presence of high-index DAEs.
The algebraic profiles are approximated using a similar mono-
mial basis representation

wherewi,q represents the values of the algebraic variables.ψq

is a Lagrange polynomial of order NC satisfying

Note that the number and length of the finite elements can be
adjusted according to the precision required in the approxima-
tion. This flexibility allows the size of the discretized reactor
model to be reduced. Also, the objective function in problem
(35)-(36) may include measurements located at positions that
may not coincide with the mesh. Rather, the calculated values
for the measurements can be interpolated along each zone to
the closest point in the mesh without losing much accuracy in
the results.

Upon substitution of the algebraic expressions (37)-(39) in
(35)-(36), these parameter estimation problems can be ex-
pressed as large-scale, structured NLP problems of the form

wherex ∈ Rnx represents all the variables obtained from the
discretization of the DAE.

4.2. NLP Algorithm. The NLP problem (40) is solved using
IPOPT, which handles variable bounds by adding a barrier
function to the objective made up of logarithmic terms

whereµ is a barrier parameter satisfyingµ > 0. Under mild
regularity conditions, solutions of (40) converge to the solution
of (40) asµ f 0.44 At a particular value ofµ, the primal-dual
optimality conditions of (41) resemble those of the original NLP
problem and are defined by

Ωq(0) ) 0 for q ∈ {1, ..., NC}

Ωq′(Fr) ) δq,r for q ∈ {1, ..., NC}

yi ) yi-1 + hi∑
q)1

NC

Ωq(1)
dy

dzi,q

(38)
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NC

ψq(z - zi-1

hi
)wi,q (39)

ψq(Fr) ) δq,r for q, r ∈ {1, ..., NC}

min f(x)

s.t. c(x) ) 0

xL e x e xU (40)

min æµ(x) ) f(x) - µ[∑
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nx

ln(x(i) - xL
(i)) + ∑
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ln(xU
(i) - x(i))]
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Ωq(z - zi-1

hi
) dy
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(37)
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whereX, XL, XU, VL, VU ∈ Rnx×nx are diagonal matrixes whose
diagonal entries are the components ofx, xL, xU,νL, and νU,
respectively;e) [1, 1, ..., 1]T ∈ Rnx, λ is the vector of Lagrange
multipliers for the equality constraints; andνL, νU ∈ Rnx is an
estimate of the multipliers for the bound constraints of the
original NLP problem. The optimality conditions can be solved
efficiently by applying Newton’s method, which requires the
solution of a large and sparse linear system at each iteration
given by

whereLk is the Lagrangian function of the original NLP problem
(40) evaluated at iterationk, Σk is defined by

and the bound multipliers are updated at each iteration from

The solution of linear system (43) is the core step of the
optimization algorithm and requires most of the computational
time. This sparse linear system can be solved efficiently using
robust factorization algorithms, such as the one implemented
in Harwell routine MA27.45 It is worth emphasizing that
exploiting the sparsity of the linear system is fundamental in
large-scale optimization. Moreover, ill-conditioning is encoun-
tered in this particular application due to poor model scaling
and high parametric sensitivity typical of polymerization reac-
tors. This is overcome through a user-specified scaling of the
model equations or automatically through equilibration algo-
rithms for the linear system, such as the one implemented in
Harwell subroutine MC19.

Global convergence of the algorithm is promoted using
a novel filter line search strategy. Line search methods require
the Hessian matrixHk ) ∇x,xLk + Σk to have strictly positive
curvature in the null space of the linearized constraint gradients.
Moreover, under the assumption that∇xc(xk) has full rank, the
projection ofHk onto the null space of∇x

Tc(xk) is positive defi-
nite if and only if the iteration matrix in (43) hasn positive and
mnegative eigenvalues. However, due to severe nonlinearity of
the problem or noninformative data, respectively, the linear inde-
pendence and positive curvature conditions may not hold at inter-
mediate iterations. To correct for this, IPOPT adds diagonal
correction terms to the (so-called KKT) matrix in (43), leading to

for someδ1, δ2 > 0. To detect whether a modification of the
Hessian is necessary, the inertia of this iteration matrix (i.e.,

the number of positive, negative, and zero eigenvalues) can be
calculated from MA27 and monitored by the algorithm.16 An
important observation here is that, if the diagonal termsδ1 and
δ2 are zero at the solution, then the system has the correct inertia,
n positive andm negative eigenvalues, and the second order
sufficient conditions hold. From a statistical perspective, this
gives the important result that the parameters have been uniquely
determined and the data are sufficiently informative.

Finally, the algorithm implemented in IPOPT is robust and
efficient in solving problems with many degrees of freedom if
exact second derivative information is provided.47 This is done
automatically through specialized automatic differentiation
routines implemented in AMPL. This feature is particularly
important for solving estimation problems with many param-
eters, such as those arising from EVM formulations.

5. Industrial Case Studies and Results

We now consider the parameter estimation for the LDPE
reactor model. Several industrial data sets have been obtained,
which contain snapshots of the operating conditions of LDPE
tubular reactors including reactor pressure, temperature profiles,
inlet and outlet cooling jacket temperatures, reactor conversion,
and the entire set of flow rates, compositions, and temperatures
of the axial feeds. The data sets also correspond to reactors with
different configurations (number and arrangement of cooling
and reaction zones, side feeds, CTAs, and initiator mixtures),
which also produce different homo- and copolymer grades with
different properties measured in terms of the macromolecular
polymer properties and density. General ranges of typical
number- and weight-average molecular weights and degrees of
LCB for each grade have been provided as well.

The main objective of the parameter estimation procedure is
to find the best set of on-line adjustable parameters and kinetic
parameters that are best able to fit the reactor operating
conditions for all data sets provided.

5.1. Estimation of On-Line Adjustable Parameters.As a
first step in the estimation approach, we consider the estimation
of the initiator efficiencies and heat transfer coefficients for
every data set provided. These parameters are usually updated
on-line to match the reactor temperature profile and the jackets
inlet and outlet temperatures and to predict the reactor conver-
sion and polymer properties obtained. Obviously, a better
temperature profile match will be reflected directly in a more
robust prediction of the reactor conversion and polymer proper-
ties.

For the base case, we consider a simplified estimation
approach used currently as an industry standard. The strategy
follows a sequential or feasible path approach as the one
described in the previous section. In this strategy, a single
efficiency is assumed for the entire initiator mixture in every
reaction zone. Each of these efficiencies is assumed to be
constant along its corresponding zone. The heat transfer
coefficients (HTCs) are estimated for every cooling and reaction
zone and are assumed to be constant along each zone as well.
Furthermore, the parameters are estimated sequentially along
the reactor, that is, solving for one zone at a time. This approach
is followed in most studies because the resulting estimation
problems are relatively small and simple to solve.17

On the other hand, in this work we propose to estimate the
efficiency, ηi,j for every initiator in the mixture fed to every
reaction zone. The efficiencies are assumed to be constant along
every zone. In addition, we estimate the HTCs for every zone,
which are assumed to be constant along their corresponding
zones as well. This approach leads to difficult problems with
many parameters. The set of parameters defining each zone can

∇xf(x) + ∇xc(x)λ - νL + νU ) 0

c(x) ) 0

(X - XL)VLe - µe ) 0

(XU - X)VUe - µe ) 0 (42)

[∇x,xLk + Σk ∇xc(xk)

∇x
Tc(xk) 0 ](∆xk

∆λk)) -(∇xæ(xk) + ∇c(xk)λk

c(xk) ) (43)

Σk ) (Xk - XL)-1VL
k + (XU - Xk)

-1VU
k

∇xæ(x,k) ) ∇x f(xk) + (Xk - XL)-1µe + (XU - Xk)
-1µe

(44)

∆νL
k ) (Xk - XL)-1(µe - VL

k∆xk) - νL
k (45)

∆νU
k ) (XU - Xk)

-1(µe + VU
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k (46)

[∇x,xLk + Σk + δ1I ∇xc(xk)

∇x
Tc(xk) -δ2I ] (47)
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be estimated sequentially as well. However, due to thedown-
stream interactionof these parameters, it is recognized that the
entire set of on-line parameters must be estimated all-at-once
for the entire reactor in a single, large estimation problem.

For the first case, we consider the match of two temperature
profiles in different ranges describing the production of two
different polymer grades (A and B) in the same reactor. Grade
A is a copolymer with high comonomer content and grade B is
a homopolymer, both of them being of high molecular weight.
The reactor under study contains 13 zones, but only the first
few reaction zones are presented. In Figure 2, the plant and
predicted profiles using the base and the proposed all-at-once
estimation approaches are presented. It is evident that the
consideration of the individual efficiencies in the all-at-once
approach has a strong impact on the initial shaping of the profiles
in the reaction zones. This is attributed to the fact that the
individual contributions of the different initiators in the mixture
are now considered at different temperature levels along each
reaction zone. The improvements in the match are more notable
from the results presented in Table 2. For both approaches, we
present the optimal values of the objective function, i.e., the
sum of squares of deviations between the plant and predicted
temperatures along the reactor and jackets. It is clear that the
proposed approach is superior in both cases.

A direct consequence of having a better temperature profile
match is the more accurate and consistent prediction of the
overall reactor conversion, which plays a central role in the
prediction of the polymer properties. In Figure 3, we present
the conversion predicted by the model using the simplified
estimation strategy and the one proposed in this work against
the plant conversion. Twenty different grades, considering wide
ranges of operating conditions and polymer properties are
presented in the graph. The proposed approach gives a more
consistent and accurate prediction. For the twenty grades, the

average conversion deviation was reduced from 12.1% using
the base case estimation strategy to 2.5% with the proposed
all-at-once approach.

Both temperature profiles presented in Figure 2 were obtained
by solving single-set parameter estimation problems. A total of
16 finite elements for the reaction zones, 2 finite elements for
the cooling zones, and 3 collocation points were used for the
discretization of the reactor model. To test different initialization
strategies for the resulting NLPs, additional experiments were
carried out using the solutions obtained from the sequential or
feasible path strategy. For the zone-by-zone estimation of the
on-line parameters, this strategy required only 20-30 CPUs for
the on-line adjustable parameters. Around 80-90% of the
solution time was spent for the integration of the reactor model
equations for every zone. However, this approach was found
to be expensive for the solution of the overall estimation problem
since, in this case, the entire reactor model needs to be integrated
at every iteration, taking around 4.5 CPUs per iteration.
Following this reasoning, the approach was expected to become

Figure 2. Plant and predicted temperature profiles using the base and the proposed estimation strategies for two different grades.

Table 2. Optimal Objective Function (OF) Values for the
Estimation Approaches Analyzed, Grades A and B Cases

grade OF-base OF-this work improvement

A 13 262.28 6628.43 50.02
B 17 474.44 4458.40 74.48

Figure 3. Plant and predicted conversions for the estimation approaches
analyzed, results for 20 different grades.
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extremely expensive for the solution of multiset and EVM
problems and, therefore, was not considered further in this study.

On the other hand, significant reductions on the overall CPU
time were obtained using the proposed simultaneous approach.
The computational results associated with the solution of the
corresponding large-scale NLPs are presented in Table 3. The
optimization problems were solved on a 3.0 GHz, 1 Gb RAM,
Pentium IV PC. Since a good starting point is provided in all
cases to the algorithm, a small initial barrier parameterµ of 1
× 10-6 was set for all calculations. In all cases, the model was
initialized with the solution of the zone-by-zone simplified
estimation strategy. In both cases, the Hessian matrix was found
to be positive definite at the solution with large eigenvalues
ranging from 102 to 1010. Since inertia correction was not
necessary at the solution, we can conclude that the parameters
are unique. The NLPs are quite large with around 10 000
constraints and 32 degrees of freedom (corresponding to the
entire set of on-line adjustable parameters). Nevertheless, the
solution approach is fast and reliable, taking around 1.5 CPUs
per iteration, compared to the 4.5 CPUs per iteration found by
following the feasible path approach. The fast and reliable
solutions obtained with the proposed method motivates the
solution of more complex parameter estimation problems which
are crucial for further development and on-line update of the
first-principles reactor model.

In Table 4, we present the values of the on-line adjustable
parameters for the Grade A case and their corresponding 95%
confidence intervals. The confidence intervals were obtained
following standard methods that approximate the covariance
matrix using the reduced Hessian at the solution of the
optimization problems.28 It is worth noticing that the initiator
efficiencies are adjustable factors that compensate for any plant-
model mismatch and, as a consequence, their actual values will
depend on the values of the rest of the kinetic parameters in
the model, for example, the initiator decomposition rate
constants. On the other hand, the values of the heat transfer
coefficients are well in the range of typical observed values in
industrial reactors.9 Similar results were obtained for the Grade
B case; hence, the estimation procedure is consistent.

5.2. Estimation of Kinetic Parameters. The estimation
approach presented in the previous section gives a robust and
accurate match of the reactor temperature profile. Once the
model is able to match this profile, we can predict the reactor
conversion, the polymer macromolecular properties, and the final
end-use properties such as the polymer density. Here, we also
need to estimate parameters for the kinetic constants that apply
to multiple data sets over different ranges of operating condi-
tions. The kinetic rate constants presented in Table 1 have the
following form

where subindexi belongs to the entire set of elementary
reactions in the kinetic mechanism. Symbolki

0 denotes the
preexponential factor,∆Eai, the activation energy,∆Evi, the
activation volume, andP, the reactor pressure.

Since the number of parameters is so large, it has been
common in previous studies to make certain assumptions and
decompose the estimation procedure into subproblems with fixed
subsets of parameters.1,5,8 In these approaches, a first step is to
estimate the propagation and termination kinetic rate constants
to match the reactor overall conversion. The second step consists
of estimating other kinetic parameters to match macromolecular
properties such as number- and weight-average molecular
weights, LCB, and polymer density. This iterative approach is
repeated until the best set of parameters is obtained. This
approach is obviously nonsystematic and time-consuming.

The ideal approach to solving these complex parameter
estimation problems is to include a large number of informative
data sets describing the operation of different reactors over wide
ranges of operating conditions, for homo- and copolymers, using
different CTAs, initiators, and producing grades with different
molecular and structural properties, and to estimate the whole
set of kinetic parameters in a single and very large parameter
estimation problem. Furthermore, since on-line adjustable
parameters depend on the kinetic parameters, they need to be
included in the estimation problem, giving rise to an even larger
and more complicated problem.

Following the all-at-once approach in this work, it is possible
to solve challenging multiset parameter estimation problems.
This enables more efficient and systematic strategies to be
developed for the estimation of the kinetic parameters using
industrial data.

5.2.1. Homopolymerization Case Study. As a first step, we
consider the estimation of the kinetic parameters for homopoly-
merization reactions. The homopolymer grades are produced
on the same reactor operating over different ranges of temper-
ature, pressure, and concentration of a single CTA. Common
values of the macromolecular properties for the different grades
are used in this problem. For all the problems solved, the entire
set of on-line and kinetic parameters is estimated to match the
reactor and jacket temperatures, overall reactor conversion,
number- and weight-average molecular weights, polymer den-
sity, and degree of long-chain branching (LCB).

The motivation behind the use of multiple data sets for the
estimation of the kinetic parameters becomes clear from Figure
4. Here, two different 95% ellipsoidal confidence regions are
presented for the propagation rate constant (kp11) preexponential
factor and activation energy. The ellipsoids were obtained from
the solution of estimation problems with one and three data sets.
It is clear that there is a large uncertainty associated with point
estimation of the preexponential factor that solves the single-
set problem. However, a single set is informative enough to
have a tight confidence interval for the activation energy since

Table 3. Computational Results for Single-Set NLP Problems, On-Line Parameter Estimation Case Studiesa

grade constraints parameters LB UB iterations CPUs NZJ NZH

A 11 955 32 374 361 11 17.03 166 425 87 954
B 11 283 32 374 361 8 10.06 138 666 76 890

a LB ) number of lower bounds; UB) number of upper bounds; NZJ) number of nonzeros in Jacobian; NZH) number of nonzeros in Hessian.

Table 4. Confidence Intervals for On-Line Adjustable Parameters, Grade A Case

zone initiator 1 initiator 2 initiator 3 HTC

1 0.2294( 0.0166 0.0736( 0.0067 0.1055( 0.0053 0.3120( 0.0138
2 0.2365( 0.0258 0.0939( 0.0011 0.0903( 0.0082 0.2325( 0.0182
3 0.2051( 0.0202 0.2028( 0.0156 0.1521( 0.0143 0.3277( 0.0153
4 0.3817( 0.0327 0.1970( 0.0157 0.1322( 0.0137 0.2887( 0.0148

ki ) ki
0 exp[-

∆Eai + P∆Evi

RT ] (48)
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every set describes the reactor behavior over a wide range of
temperature. In Figure 5, the confidence regions from the
solution of problems having 3 and 6 data sets are presented.
The ellipsoid obtained from the 6 sets problem is even smaller,
and the parameter estimates seem to have tight enough
confidence intervals.

Multiset estimation problems were solved using the standard
least-squares and EVM formulations. The reformulated model
described in the previous section is used in these problems. The
computational results are presented in Table 5. The resulting
NLP size increases linearly with the number of data sets. For
the EVM formulation, we have many more degrees of freedom,
which also increase linearly. Thus, for standard least-squares,
we estimate 32 on-line adjustable parameters for each data set
along with 28 kinetic parameters; the heat of polymerization is
estimated as well. For the EVM formulation, the degrees of
freedom for every set are increased by 52 input variables. In
all cases, the estimation problems are initialized from a good
starting point using the optimal values of the on-line adjustable
parameters obtained in the previous section. Accordingly, an
initial barrier parameterµ was set to a small value of 1× 10-6

for all the calculations. Other than this, the default algorithmic
parameters of the optimization algorithm were used. It is
interesting to analyze the performance of the algorithm in the
solution of these large-scale NLPs. The number of iterations

remains consistent among the different problems and in a range
typical of interior-point methods. The sparsity pattern of the
linear system (43) is almost unaltered between formulations.
This might explain the similar computational times required by
the algorithm despite the increase in the degrees of freedom.
The availability of exact first and second order derivative
information is also crucial. The largest estimation problem was
solved in less than 20 min on a 3.0 GHz, 1 Gb RAM, Pentium
IV PC. Problems with more data sets were not solved due to
limitations in memory requirements associated with the storage
of the large and relatively sparse iteration matrix. Furthermore,
it was decided to solve the problems only with standard
computational resources. A fast and efficient approach to the
solution of problems with dozens of data sets aiming to
overcome this problem is described in the last section of the
paper.

For the parameter estimation, we assume the initiation and
propagation rate constants to be equal. We also determined that
the combined estimation of the initiator efficiencies and the
initiator decomposition rate constants leads to nonunique
solutions. Therefore, the decomposition rate parameters were
fixed and rate constants for termination by combination and
disproportionation were assumed to be equal. With these
assumptions, the obtained parameter values lie well between
reported ranges4 but the activation volumes for the propagation,
chain transfer to monomer, and backbiting reactions have
opposite signs to those usually reported. Also, theâ-scission
reaction rate parameters are not observable from the data. These
can be estimated only if information such as vinylenes and
vinylidenes content is included in the problem. Unfortunately,
this information was not available.

On the other hand, with the previous base set of parameters,
the model could not predict the effect of large variations of
pressure on the weight-average molecular weight. This effect
might be due to the polymerization mechanism itself or to
physical phenomena (for instance, a decreased polymer solubil-
ity in the gas phase) not considered by the model. With the
new set of estimated parameters, the model was able to predict
this pressure effect, and the estimated activation volumes are
clearly compensating for this effect.

Finally, the model predictions were notably improved using
the new set of parameters. This is clearly depicted in Figure 6
where plant and model predictions for the overall reactor
conversion, number- and weight-average molecular weights and
degree of LCB are presented. Here, we consider a total of six
estimation and eight validation cases including different reactor
configurations and wide ranges of operating conditions. These
grades span a range of 30-37% on the overall reactor
conversion, 14 500-19 500 g/gmol on the number-average
molecular weight, 150 000-450 000 g/gmol on the weight-
average molecular weight, and 2.4-2.8 on the number of LCBs
per 1000 carbon atoms. Average values of the deviations
between the model predictions and the plant measurements for
different polymer properties are presented in Table 6. Here, we
present model deviations using the base industrial set of kinetic
parameters provided and the new parameters obtained in this
work. The predictions using the new set clearly outperform those
obtained using the base set in all cases.

5.2.2. Copolymerization Case Study. Some of the polymer
grades consist of LDPE copolymers of high molecular weight
and low comonomer content. Using the optimal set of param-
eters for the homopolymerization reactions, the next step is to
estimate the kinetic parameters for the rate constants of the
copolymerization reactions. The best approach to solving this

Figure 4. Confidence regions for the parameters of the propagation rate
constantkp11, results for problems with 1 and 3 data sets.

Figure 5. Confidence regions for the parameters of the propagation rate
constantkp11, results for problems with 3 and 6 data sets.
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problem would be to consider a large multiset estimation
problem including both homo- and copolymer grades to estimate
the whole set of kinetic parameters. However, the optimization
problems resulting from the copolymerization cases are signifi-
cantly more expensive to solve.

The estimation of the copolymerization kinetic parameters
was performed with a three data set estimation problem. Only
the parameters corresponding to the copolymerization reactions
were estimated; the homopolymerization parameters were fixed
at their optimal values. The copolymer grades data sets are not
highly informative since these grades are produced under limited
ranges of operating conditions and the resulting polymer
properties are quite similar. Therefore, even if many data sets
could be handled in a single problem to estimate the whole set
of kinetic parameters, there would not be a significant reduction
in the parameter confidence intervals. Table 7 summarizes the
computational results for the solution of the standard least-
squares and EVM problem. A total of 32 on-line adjustable
parameters was estimated for every data set along with 22 kinetic
parameters. Both problems were solved in a similar number of
iterations. Interestingly, the algorithm required less CPU time
for the EVM problem than the standard problem. Nevertheless,
a solution of these problems is more expensive than for
homopolymerization due to it having more constraints and a
denser structure for the Jacobian matrix.

For copolymerization, the resulting confidence intervals are
not as tight as for the homopolymerization case. This can be
attributed to the small number of sets used in the estimation
problem or to a lack of informative data. The three grades used
in the estimation are obtained at a similar reactor pressure, so
there is a large uncertainty associated with the activation
volumes for the different rate constants. The chain transfer to
monomer and comonomer rate constantskfm21 andkfm22 cannot
be estimated reliably using the data provided. Furthermore, the

kinetic parameters for the backbiting rate constantkb2 and the
heat of polymerization,∆Hr2, do not seem to have a strong effect
on the model. We also note that the model is limited in the
prediction of the degree of LCB for the copolymer grades. This
is due to the fact that our base kinetic mechanism assumes that
the addition of copolymer does not have a strong effect on the
chain transfer to polymer reactions. Unfortunately, the assump-
tion cannot be corroborated since the related kinetic parameters
cannot be estimated reliably using the data provided, as
discussed previously.

Nevertheless, as in the homopolymerization case, the model
predictions were notably improved for the copolymerization case
as well. This can be noted from Figure 7. In this case, three
estimation and three validation sets were considered. The grades
span a range of 33-37% on the overall reactor conversion,
22 000-29 000 on the number-average molecular weight,
200 000-350 000 on the weight-average molecular weight,
2.9-3.6 on the number of LCBs per 1000 carbon atoms, and
2-6% on the copolymer composition. Improved predictions
were obtained over the full range of the polymer properties using
the new set of kinetic parameters. In Table 8, the average
deviations of the polymer properties and the overall reactor
conversion are presented. Again, the model predictions with the
new set of parameters outperform those obtained using the base
set provided from industry.

6. Conclusions and Future Work

We propose a simultaneous, or all-at-once, approach for the
solution of large-scale DAE-constrained parameter estimation
problems. The estimation problems arise from model develop-
ment and on-line estimation tasks of first-principles models for
LDPE reactors. The solution strategy allows the robust and
efficient solution of large multiset parameter estimation prob-
lems with up to 200 parameters. Challenging parameter estima-
tion strategies such as the errors-in-variables-measured (EVM)
formulation can be handled in a straightforward manner under
this approach. Here, multiset EVM estimation problems with
up to 70 000 constraints and over 500 degrees of freedom can
be solved quickly and efficiently with standard computational
resources. The use of robust and efficient large-scale nonlinear
programming algorithms is fundamental for the solution of the
associated large-scale NLP problems. Following the systematic
estimation strategy, reliable parameter estimates could be
estimated directly from industrial plant data using the rigorous
reactor model. Also, notable improvements in the model
predictions were found using the estimated parameters.

There is a natural motivation to solve estimation problems
with as much informative data as possible, in order to find more

Table 5. Computational Results for Multiple-Set NLP Problems, Homopolymerization Case Studya

data sets constraints DOF LB UB iterations CPUs NZJ NZH

3 33 900 121 1246 1207 68 451.51 520 275 552 738
3 (EVM) 33 952 277 1366 1327 57 345.82 520 636 553 080
6 68 421 217 2467 2389 58 900.21 1 058 412 1 119 258
6 (EVM) 68 627 529 2653 2575 71 1010.74 1 059 512 1 119 780

a LB ) number of lower bounds; UB) number of upper bounds; NZJ) number of nonzeros in Jacobian; NZH) number of nonzeros in Hessian; DOF
) degrees of freedom.

Figure 6. Homopolymer grade macromolecular properties, plant and model
predictions.

Table 6. Average Deviations between Plant and Model Predictions
for Reactor Conversion and Grade Macromolecular Propertiesa

parameter
set

conversion
(%)

MWn

(%)
MWw

(%)
LCB
(%)

density
(%)

base 1.49 23.24 18.58 19.20 0.0965
new 0.12 6.20 3.31 6.27 0.0875

a Results for 14 different grades, homopolymerization case study.
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reliable parameter estimates. However, beyond the problems
addressed here, there is a limitation in both memory and CPU
time requirements for the solution of highly complex multiset
estimation problems, using current standard computational
resources. These limitations can be overcome through special-
ized decomposition strategies50 that are able to exploit the
structure of the parameter estimation problems (35)-(36). For
instance, recalling the EVM problem formulation, two different
sets of variables can be identified. The first set affectsonly a
particular data setk (pk,j anduk,j). These variables include the
initiator efficiencies, the heat transfer coefficients, and the input
variables for the given data set. The second set of variables,
i.e., the kinetic parameters, appear in the constraints of all the
data sets (Π). This means that the only complicating variables
between the entire set of constraints in the optimization problem
is the small subset of variablesΠ. Therefore, the resulting NLP
problem obtained from the discretization of the parameter
estimation problem can be viewed as a multiscenario optimiza-
tion problem.49 These problems give rise to a very particular
and well-defined arrowhead or block-bordered diagonal structure
of the linear system (43). A straightforward decomposition
strategy can be applied to this system, leading to the serial or
parallel solution of smaller linear systems corresponding to each
data set and, thus, overcoming memory and CPU time limita-
tions.

Finally, a recent object-oriented re-implementation of IPOPT
permits a flexible environment for the implementation of tailored

linear algebra strategies, thus allowing the solution of challeng-
ing large-scale optimization problems with exploitable structures
such as the particular ones arising from parameter estimation.51

The application of this approach will be the subject of a future
study.
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Notation

A ) reactor cross-sectional area, m2

Cj ) molar concentration ofjth component, kgmol/m3

Cp ) reacting mixture heat capacity, kJ/kg‚K
Cpc ) cooling agent heat capacity, kJ/kg‚K
Di ) reactor internal diameter, m
Dr,s ) concentration of dead polymer chains withr monomer

units ands comonomer units, kmol/m3

Fj ) molar flow rate of thejth component, kgmol/s
Fc ) cooling agent flow rate, kg/s
fr ) Fanning friction factor
HTC ) heat transfer coefficient, kW/m2‚K
kbi ) intramolecular (backbiting) chain transfer of live polymer

chains of typei, 1/s
kdi ) decomposition rate constant of theith initiator, 1/s
kIi ) initiation rate constant for theith monomer, m3/gmol‚s
kfmij ) rate constant for the transfer of live polymer chains of

type i to the j monomer, m3/gmol‚s
kfpij ) rate constant for the transfer of dead polymer chains of

type i to the j monomer, m3/gmol‚s
kpij ) propagation rate constant for the live polymer chains

ending in theith monomer unit with thejth monomer, m3/
gmol‚s

ksij ) rate constant for transfer of live polymer chains of type
i to chain-transfer agentj, m3/gmol‚s

kspij ) rate constant for incorporation of CTAj to live polymer
chains of typei, m3/gmol‚s

ktcij ) termination by combination rate constant, m3/gmol‚s
ktdij ) termination by disproportionation rate constant, m3/gmol‚

s
kâi ) â-scission rate constant for secondary radicals, 1/s
kâi′ ) â-scission rate constant for tertiary radicals, 1/s
LCB ) number of long-chain branches per 1000 carbon atoms
MWn ) number-average molecular weight, kg/kgmol
MWw ) weight-average molecular weight, kg/kgmol
MW0 ) molecular weight of a building unit, kg/kgmol
NI ) number of initiators
NS ) number of chain-transfer agent(s)
P ) reactor pressure, atm
Ri ) total concentration of live polymer chains ending in a

radical of typei, kgmol/m3

SCB) number of short-chain branches per 1000 carbon atoms
T ) reactor temperature, K
Tc ) cooling agent temperature, K
V ) fluid velocity, m/s

Table 7. Computational Results for Multiple-Set NLP Problems, Copolymerization Case Studya

data sets constraints DOF LB UB iterations CPUs NZJ NZH

3 35 868 118 1249 1210 89 1008.75 636 891 657 880
3 (EVM) 35 973 289 1351 1312 84 751.14 637 467 658 150

a LB ) number of lower bounds; UB) number of upper bounds; NZJ) number of nonzeros in Jacobian; NZH) number of nonzeros in Hessian; DOF
) degrees of freedom.

Figure 7. Copolymer grade macromolecular properties, plant and model
predictions.

Table 8. Average Deviations between Plant and Model Predictions
for Reactor Conversion and Grade Macromolecular Propertiesa

parameter
set

conversion
(%)

MWn

(%)
MWw

(%)
LCB
(%)

density
(%)

base 2.03 24.48 6.13 26.40 0.262
new 0.37 8.29 1.83 16.64 0.095

a Results for 6 different grades, copolymerization case study.
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Greek Letters

-∆Hri ) heat of reaction for theith monomer, kJ/kgmol
ηi ) efficiency of theith initiator in the mixture
λn

i ) nth order single moment of the live polymer chains of
type i, kgmol/m3

µn ) nth order single moment of the dead polymer chains,
kgmol/m3

Fm ) reacting mixture density, kg/m3

Fpol ) polymer density, g/cm3

Subscripts

Ii ) ith initiator
Si ) ith chain-transfer agent
mi ) ith monomer
R ) primary radicals
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